xskillscore.me¶
- xskillscore.me(a, b, dim=None, weights=None, skipna=False, keep_attrs=False)¶
Mean Error.
\[\mathrm{ME} = \frac{1}{n}\sum_{i=1}^{n}(a_{i} - b_{i})\]- Parameters:
a (xarray.Dataset or xarray.DataArray) – Labeled array(s) over which to apply the function.
b (xarray.Dataset or xarray.DataArray) – Labeled array(s) over which to apply the function.
dim (str, list) – The dimension(s) to apply the me along. Note that this dimension will be reduced as a result. Defaults to None reducing all dimensions.
weights (xarray.Dataset or xarray.DataArray or None) – Weights matching dimensions of
dim
to apply during the function.skipna (bool) – If True, skip NaNs when computing function.
keep_attrs (bool) – If True, the attributes (attrs) will be copied from the first input to the new one. If False (default), the new object will be returned without attributes.
- Returns:
Mean Error.
- Return type:
Examples
>>> a = xr.DataArray(np.random.rand(5, 3, 3), dims=['time', 'x', 'y']) >>> b = xr.DataArray(np.random.rand(5, 3, 3), dims=['time', 'x', 'y']) >>> me(a, b, dim='time') <xarray.DataArray (x: 3, y: 3)> array([[ 0.01748202, -0.14165293, 0.22455357], [ 0.13893709, -0.23513353, -0.18174132], [-0.29317762, 0.16887445, -0.17297527]]) Dimensions without coordinates: x, y