xskillscore.mae¶
- xskillscore.mae(a, b, dim=None, weights=None, skipna=False, keep_attrs=False)¶
Mean Absolute Error.
\[\mathrm{MAE} = \frac{1}{n}\sum_{i=1}^{n}\vert a - b\vert\]- Parameters:
a (xarray.Dataset or xarray.DataArray) – Labeled array(s) over which to apply the function.
b (xarray.Dataset or xarray.DataArray) – Labeled array(s) over which to apply the function.
dim (str, list) – The dimension(s) to apply the mae along. Note that this dimension will be reduced as a result. Defaults to None reducing all dimensions.
weights (xarray.Dataset or xarray.DataArray or None) – Weights matching dimensions of
dim
to apply during the function.skipna (bool) – If True, skip NaNs when computing function.
keep_attrs (bool) – If True, the attributes (attrs) will be copied from the first input to the new one. If False (default), the new object will be returned without attributes.
- Returns:
Mean Absolute Error.
- Return type:
See also
References
https://en.wikipedia.org/wiki/Mean_absolute_error
Examples
>>> a = xr.DataArray(np.random.rand(5, 3, 3), dims=['time', 'x', 'y']) >>> b = xr.DataArray(np.random.rand(5, 3, 3), dims=['time', 'x', 'y']) >>> mae(a, b, dim='time') <xarray.DataArray (x: 3, y: 3)> array([[0.26014863, 0.40137207, 0.48871634], [0.18809417, 0.30197826, 0.2984658 ], [0.52934554, 0.19820357, 0.17335851]]) Dimensions without coordinates: x, y